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1 INTRODUCTION                                                                     
    General Topology plays an important role in many fields of 
applied sciences as well as branches of mathematics. In reality 
it is used in computational topology for geometric design and 
molecular design, computer-aided design, comuter-aided ge-
ometric design, digital topology, data mining, information 
systems and qumtum physics. One can refer to the following 
papers, respectively: [16], [25], [12-13],[21],[14], [8-11]. 
 
    In 1996, Dontchev [5] introduced the notion of contra conti-
nuity and strong S-closedness in topological spaces. A new 
weaker form of this class of functions called contra semi con-
tinuous function is introduced and investigated by Dontchev 
and Noiri [6]. Recently, Rajamani and Vishwanathan [22] have 
introduced the notion of αgs-closed sets. Using αgs-closed set 
we define and study new class of functions called Almost con-
tra αgs-continuous as well as contra αgs-continuous functions 
as a new generalization of contra continuity.  

2 PRILIMNARIES 

Throughout this paper (X,τ ) and (Y,σ) (or simply X and Y) 
denote topological spaces on which no separation axioms are 
assumed unless explicitly stated. If A is any subset of space X, 
then Cl(A) and Int(A) denote the closure of A and the interior 
of A in X respectively. 
The following definitions are useful in the sequel: 

Definition 2.1: A subset A of space X is called 
(i) a semi-open set [15] if A ⊆ Cl(Int(A))   
(ii) a semi-closed set [1] if Int(Cl(Int(A)))  ⊆ A 
(iii) α-open [18] if  A ⊆ Int(Cl(Int(A)))   

(iii) a regular open set [30] if A = Int(Cl(A)) 
 
Definition 2.2 [22]:  A subset A of a topological space X is 
called α-generalized-semi closed (briefly, αgs-closed) if αcl(A) 
⊂ U, whenever A ⊂ U and U is semi-open in X. The comple-

ment of αgs-closed set is α-generalized-semi open (briefly, 
αgs-open). We denote the family of αgs-closed sets of X by 
αGSC(X, τ) and αgs-open sets by αGSO(X, τ). 
 
Definition 2.3 [17]: A topological space X is said to be  
(i) α-generalized semi-To (in brief, αgs-To), if for each pair of 
distinct points x, y of X, there exists an αgs-open set contain-
ing one point but not the other. 
(ii) α-generalized semi-T1 (in brief, αgs-T1), if for each pair of 
distinct points x, y of X, there exist disjoint αgs-open sets, one 
containing x but not y and the other containing y but not x. 
(iii) α-generalized semi-T2 (in brief, αgs-T2), if for each pair of 
distinct points x, y of X, there exist disjoint αgs-open sets U 
and V such that x ∈ U and y ∈ V. 

Definition 2.4 [23]: A function f: X → Y is called α-generalized 
semi-continuous (in briefly, αgs-continuous), if f-1(F) is αgs-
closed in X for every closed set F of Y.  
 
Definition 2.5 [23]: A space X is called Tαgs-space if every αgs-
closed set in in is closed set. 

 
Definition 2.6 [26]  
(i) Nearly countably compact if every countable cover of X by 
     regular open sets has a finite subcover.  
(ii) Nearly compact if every regular open cover of X has a 
      finite subcover. 
(iii) S-closed [31] if every regular closed cover of x has a finite  
       Subcover 

3   Almost Contra αGS-Continuous Functions 

In this section we introduce new type of continuity called al-
most contra αgs-continuous functions which is weaker than 
contra αgs-continuous. 

Definition 3.1: A function f: X→Y is said to be almost contra 
αgs-continuous if f-1(V) is αgs-closed set in X for each regular 
open set V of Y. 

Definition 3.2: A function f: X → Y is called contra αgs-
continous function if f-1(F) is αgs-closed in X for every open set 
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F of Y. 

Theorem 3.3:  If f: X→Y is contra αgs-continuous then it is al-
most contra αgs-continuous. 
Proof: Obvious, as every regular open set is open set. 
 
But converse of the above theorem is not true as shown by the 
following example. 

Example 3.4:  Let X =Y = {a, b, c},   τ = {X, ϕ, {a}, {b, c}}, σ = {Y, 
ϕ, {a}, {c}, {a, c}}. We have αgs -closed sets in X are {{b}, {c}, {a, 
b}, {a, c}}. Then f: X → Y defined by f(a) = b, f(b) = a, f(c) = c is 
almost contra αgs-continuous but not contra αgs-continuous 
function as for open set {a, c} in Y,   f-1({a, c}) = {b ,c} which is 
not αgs-closed set in X.                                                                            

Definition 3.5: A space X is called locally αgs-indiscrete if eve-
ry αgs-open set is closed in X. 

Theorem 3.6:  If f: X→Y is almost contra αgs-continuous and X 
is locally αgs-indiscrete space then f is almost contra continu-
ous. 

Proof:  Let V be a regular open set in Y. Since f is almost contra 
αgs-continuous f-1(V) is αgs-closed set in X and X is locally 
αgs-indiscrete space, which implies f-1(V) is an open set in X. 
Therefore f is almost contra continuous. 

Theorem 3.7:  If f: X→Y is almost contra αgs-continuous and X 
is Tαgs-space then f is almost continuous. 
Proof:  Let V be a regular open set in Y. Since f is almost contra 
αgs-continuous f-1(V) is αgs-closed set in X and X is Tαgs-space, 
which implies f-1(V) is closed set in X. Therefore f is almost 
contra continuous. 

  Although αGSC(X) is closed under finite union, αGSO(X) is 
not. In the following theorem, we assume that αGSC(X) is 
closed under arbitrary union. 

Theorem 3.8: The following are equivalent for a function f: 
X→Y 
(i) f is almost contra αgs-continuous. 
(ii) For every regular closed set F of Y, f-1(F) is αgs-open set of 
X. 
(iii) for each  x ∈ X and each regular closed set F of Y contain-
ing f(x), there exists αgs-open set U containing x such that f(U) 
⊂ F. 
(iv) for each  x ∈ X and each regular closed set V of Y not con-
taining f(x), there exists αgs-closed set  K not  containing x 
such that f-1(V) ⊂ K.. 
 
Proof: (i) ⇒(ii) Let F be a regular closed set of Y. Then Y-F is 
regular open set in Y. By (i), f-1(Y-F) = X-f-1(F) is αgs -closed set 
in X. This implies f-1(F) is αgs -open set in X. Therefore, (ii) 
holds. 

(ii) ⇒(i) Let G be an regular open set of Y. Then Y-G is a regu-
lar closed set in Y. By (ii), f-1(Y-G) is αgs-open set in X. This 
implies X-f-1(G) is αgs-open set in X. this implies f-1(G) is αgs -
closed set in X. Therefore, (i) hold. 

(ii) ⇒(iii) Let F be a regular closed set of Y containing f(x), 
which implies x ∈ f-1(F). By (ii) f-1(F) is αgs-open set in X con-
taining x. Set U = f-1(F), which implies U is αgs-open set in X 
containing x and f(U) = f(f-1(F)) ⊂ F . Therefore, (iii) holds. 
 
(iii) ⇒(ii) Let F be a regular closed set in Y containing f(x), 
which implies x ∈ f-1(F). By (iii) there exists αgs-open set Ux in 
X containing x such that. f(U) ⊂ F that is  U  ⊂ f-1(F) =∪ {Ux : x 
∈ f-1(F)} which is union of αgs-open sets. Therefore f-1(F) is 
αgs-open set of X. 
 
 (iii) ⇒(iv) Let F be a regular open set of Y not containing f(x). 
Then Y-V is a regular closed set in Y containing f(x). From (iii), 
there exists a αgs-open set U in X containing x such that f(U) ⊂ 
Y-V. This implies that U ⊂ f-1(Y-V) = X - f-1(V). Hence, f-1(V)   ⊂ 
X-U. Set X-U =K, then K is αgs-closed set not containing x in X 
such that f-1(V) ⊂ K. 
 
(iv) ⇒(iii) Let F be a regular closed set in Y  containing f(x). 
Then Y-f(x) is a regular open set in Y not containing f(x). From 
(iv), there exists a αgs-closed set K in X not containing x such 
that f-1(Y-F) ⊂ K. This implies that X- f-1(F) ⊂ K. Hence X-K  ⊂  
f-1(F), that is f(X-K) ⊂ F. Set U = X- K, then U is αgs-open set 
containing x in X such that f(U) ⊂ F. 
 
     Recall that space X is said to be weakly Hausdorff [27] if 
each element of X is an intersection of regular closed sets. 

Theorem 3.9: If f: X→Y is an almost contra αgs-continuous 
injection and Y is weakly Hausdorff, then X is αgs-T1. 

Proof: Suppose Y is weakly Hausdorff. For any distinct points 
x and y in X, there exist V and W regular closed sets in Y such 
that f(x)∈V, f(y)∉V, f(y)∈W and f(x)∉W. Since f is almost con-
tra αgs-continuous, implies f-1(V) and f-1(W) are αgs-open sub-
sets of X such that x∈f-1(V), y∉f-1(V), y∈f-1(W) and x∉ f-1(W). 
This shows that X is αgs-T1. 
 
Corollary 3.10: If f: X→Y is a contra αgs-continuous injection 
and Y is weakly Hausdorff, then X is αgs-T1. 

Definition 3.11[28]: A topological space X is called Ultra 
Hausdroff space, if for every pair of distinct points x and y in 
X, there exist disjoint clopen sets U and V in X containing x 
and y respectively. 

Theorem 3.12: If f: X→Y is an almost contra αgs-continuous 
injective function from space X into an Ultra Hausdroff space 
Y, then X is αgs-T2. 

Proof: Let x and y be any two distinct points in X. Since f is 
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injective f(x) ≠ f(y) and Y is Ultra Hausdroff space, implies 
there exist disjoint clopen sets U and V of Y containing f(x) 
and f(y) respectively. Then x∈f-1(U) and y∈f-1(V), where f-1(U) 
and f-1(V) are disjoint αgs-open sets in X. Therefore X is αgs-
T2. 

Definition 3.13: A topological space X is said to be  
(i) ultra normal [28]if each pair of disjoint closed sets can 
   be separated by disjoint clopen sets. 
(ii) αgs-normal [24] if for any pair of disjoint αgs-closed  
     sets A and B in X, there exist disjoint open sets U and V in X    
    such that A ⊆ U and B ⊆ V. 

Theorem 3.14: If f: X→Y is an almost contra αgs-continuous 
closed injection and Y is ultra normal, then X is αgs-normal. 

Proof: Let E and F be disjoint closed subsets of X. Since f is 
closed and injective f(E) and f(F) are disjoint closed sets in Y. 
Since Y is ultra normal there exists disjoint clopen sets U and 
V in Y such that U⊂ f(E) and V⊂ f(F). This implies f-1(U) ⊂ E 
and f-1(V) ⊂ F. Since f is almost contra αgs-continuous injec-
tion, f-1(U) and f-1(V) are disjoint αgs-open sets in X. This 
shows X is αgs-normal. 
 

Definition 3.15:  A filter base Λ is said to be αgs-convergent 
(resp. rc-covergent [7]) to a point x ∈ X if for any A ∈ αGSO(X) 
containing x (resp. A ∈ RC(X) containing x), there exists a B∈ 
Λ such that B ⊂ A. 
 
Theorem 3.16: : If f: X→Y is an almost contra αgs-continuous, 
then for each point x ∈ X and each filter base Λ in X αgs-
converging to x, the filter base f(Λ) is rc-convrgent to f(x). 
 

Proof:  Let x ∈ X and Λ be any filterbase in X αgs-converging to 
x. Since f is almost contra αgs-continuous, then for any V∈ 
RC(Y) containing f(x), there exists U ∈ αGSO(X) containing x 
such that f(U) ⊂ V. Since Λ is αgs-convergent to x, there exists 
a B ∈ Λ such that B ⊂ U. This means that f(B) ⊂ V and therefore 
the filterbase f(Λ) is rc-convergent to f(x). 

Theorem 3.17: If f: X→Y is an almost contra αgs-continuous 
closed injection and A is open subset of X, then the restriction 
(f/A): X→Y is almost contra αgs-continuous. 

Proof: Let F be a regular closed set in Y. Since f is almost con-
tra αgs-continuous, f-1(F) ∈ αGSO(X). Since A is open, it fol-
lows that (f/A)-1(F) = A ∩ f-1(F) ∈ αGSO(X).  Therefore (f/A): 
X→Y is almost contra αgs-continuous. 

Now, let us define the following. 

Definition 3.18:  A topological space X is said to be αgs-
connected if X cannot be expressed as disjoint union two non 
empty αgs-open sets 

Theorem 3.19: If f: X→Y is an almost contra αgs continuous 
surjection and X is αgs-connected, then Y is connected. 

Proof: Suppose Y is a not connected space. Then there exist 
disjoint open sets U and V such that Y=U ∪ V. Therefore U 
and V are clopen in Y. Since f is an almost contra αgs-
continuous, f-1(U) and f-1(V) are αgs-open sets in X. Moreover  
f-1(U) and f-1(V) are non empty disjoint and X= f-1(U) ∪ f-1(V). 
This shows that X is not αgs-connected space. This is contra-
diction. Therefore, Y is connected. 

     Recal that a function f: X→Y is said to be perfectly continu-
ous  [19] if f-1(U) is clopen in X for each open set U of Y. 
 
Theorem 3.20: For two functions f: X→Y and g: Y→Z, let gof: 
X→Z is a composition function. Then, the following properties 
hold 
(i) If f is almost contra αgs-continuous and g is an R-map, then 
gof is contra αgs-continuous. 
(ii) If f is almost contra αgs-continuous and g is perfectly con-
tinuous,then gof is αgs-continuous and contra αgs-continuous. 
(iii) If f is contra αgs-continuous and g is almost continuous, 
then gof is almost contra αgs-continuous. 

Proof: (i) Let V be any regular open set in Z. Since g is an R-
map, g-1(V) is regular open in Y. Since f is an almost contra 
αgs-continuous f-1(g-1(V)) = (gof)-1(V) is αgs-closed sets in X. 
Therefore, gof is almost contra αgs-continuous. 

(ii) Let V be any open set in Z. Since g is perfectly continuous, 
g-1(V) is clopen in Y. Since f is an almost contra αgs-continuous 
f-1(g-1(V)) = (gof)-1(V) is αgs-open and αgs-closed set in X. 
Therefore, gof is αgs-continuous and contra αgs-continuous. 

(iii) Let V be any regular open set in Z. Since g is almost con-
tinuous, g-1(V) is regular open in Y. Since f is contra αgs-
continuous f-1(g-1(V)) = (gof)-1(V) is αgs-closed sets in X. There-
fore, g◦f is almost contra αgs-continuous. 
 
Theorem 3.21: Let f: X→Y is almost contra αgs-continuous and 
g: Y→Z is αgs-continuous. If Y is Tαgs-space, then gof: X→Z is 
almost contra αgs-continuous. 

Proof: Let V be any regular open set in Z. Since g is αgs-
continuous g-1(V) is αgs -open in Y and Y is Tαgs-space implies 
g-1(V) open in Y. Since f is contra αgs-continuous f-1(g-1(V)) = 
(gof)-1(V) is αgs-closed sets in X. Therefore, gof is almost con-
tra αgs-continuous. 
 
Theorem 3.22: If f: X→Y is surjective αgs-open (or αgs-closed) 
and g: Y→Z is a function such that gof: X→Z is almost contra 
αgs-continuous, then g is almost contra αgs-continuous. 

Proof: Let V be any regular closed (resp. regular open) set in 
Z. Since gof is almost contra αgs-continuous, we have  
(gof)-1(V) = f-1(g-1(V) is αgs-open (resp. αgs-closed). Since f is 
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surjective and αgs-open (or αgs-closed), we have  
f(f-1(g-1(V))=g-1(V) is αgs-open (or αgs-closed). Therefore g is 
almost contra αgs-continuous. 

Definition 3.23: A f: X→Y is said to be αgs-open (resp. αgs-
closed) if f(U) is αgs-open (resp. αgs-closed) in Y for each αgs-
open (αgs-closed) set U of X. 
 
Theorem 3.24: If f: X→Y is surjective αgs-open (αgs-closed) 
and g: Y→Z is a function such that gof: X→Z is almost contra 
αgs-continuous, then g is almost contra αgs-continuous. 

Proof:  Let V be a regular closed (resp. regular open) set in Z. 
Since gof is almost contra αgs-continuous, then (gof)-1(V) = 
f-1(g-1(V)) is αgs-open (resp. αgs-closed). Since f is surjective 
and αgs-open (resp. αgs-closed), then f(f-1(g-1(V)) = g-1(V) is  
αgs-open (resp. αgs-closed). Therefore, g is almost contra αgs-
continuous. 
 
Definition 3.25: A topological space X is said to be αgs-ultra-
connected if every two nonempty αgs-closed subsets of X in-
tersect. 

    We recall that a topological space X is said to be hypercon-
nected [26] if every open set is dense. 
 
Theorem 3.26: If X is αgs-ultra-connected and f: X→Y is an 
almost contra αgs-continuous surjection, then Y is hypercon-
nected. 

Proof: Suppose Y is not hyperconnected. Then there exists an 
open set V such that V is not dense in Y. So there exist 
nonempty regular open subsets B1=Int(Cl(V)) and B2=Y-Cl(V) 
in Y. Since f is almost contra αgs-continuous, f-1(B1) and f-1(B2) 
are disjoint αgs-closed. This is contrary to the X is αgs-ultra-
connected. Therefore, Y is hyperconnected. 
 

Definition 3.27: A space X is said to be    
(i) αgs-compact if every αgs-open cover of X has a finite sub 
     cover. 
(ii) Countably αgs-compact if every countable cover of X by 
    αgs-open sets has a finite   subcover. 
(iii) αGS-closed if every αgs-closed cover of X has a finite  
       subcover. 
(iii) αgs-Lindelof if every αgs-open cover of X has a countable  
       subcover. 
(iv) αGS-Lindelof if every αgs-closed cover of X has a counta 
       ble subcover. 
(v)  S-Lindelof [4] if every cover of X by regular closed sets has 
       a countable subcover. 
(vi) Countably αGS-closed if every countable cover of X by 
       αgs-closed sets has a finite subcover. 

Theorem 3.28: Let f: X→Y be an almost contra αgs-continuous 
surjection. Then, the following properties hold. 
(i) If X is αGS-closed, then Y is nearly compact. 

(ii) If X is Countably αGS-closed, then Y is nearly countabaly 
compact. 
(iii) If X is αGS-Lindelof, then Y is Lindelof. 

Proof: (i) Let {Vα: α∈I} be any regular open cover of Y. Since f 
is almost contra αgs-continuous, then {f-1(Vα): α∈I} is αgs -
closed cover of X. Since X is αGS-closed, there exists a finite 
subset Io of I such that X= ∪{f-1(Vα): α∈Io}. Thus, we have Y= 
∪ {Vα: α∈Io} and Y is nearly compact. 

(ii) Let {Vα: α∈I} be any countable regular open cover of Y. 
Since f is almost contra αgs continuous, then {f-1(Vα): α∈I} is 
countable αgs-closed cover of X. Since X is countably αGS-
closed, there exists a finite subset I0 of I such that X= ∪{f-1(Vα): 
α∈Io}. Thus, we have Y= ∪{Vα: α∈Io} and Y is nearly counta-
bly compact. 

(iii) Let {Vα: α∈I} be any regular open cover of Y. Since f is 
almost contra αgs-continuous, then {f-1(Vα): α∈I} is αgs-closed 
cover of X. Since X is αGS-Lindelof, there exists a countable 
subset Io of I such that X= ∪{f-1(Vα): α∈Io}. Thus, we have Y= 
∪{Vα: α∈Io} and Y is nearly Lindelof. 

Theorem 3.29: Let f: X→Y be an almost contra αgs-continuous 
surjection. Then, the following properties hold. 
(i) If X is αgs-compact, then Y is S-closed. 
(ii) If X is countably αgs-compact, then Y is countably S-closed. 
(iii) If X is αgs-Lindelof, then Y is S-Lindelof. 

Proof: (i) Let {Vα: α∈I} be any regular closed cover of Y. Since f 
is almost contra αgs-continuous, then {f-1(Vα): α∈I} is αgs-open 
cover of X. Since X is αgs-compact, there exists a finite subset 
I0 of I such that X= ∪ {f-1(Vα): α∈Io}. Thus, we have Y= ∪ {Vα: 
α∈Io} and Y is S-closed. 

(ii) Let {Vα: α∈I} be any countable regular closed cover of Y. 
Since f is almost contra αgs-continuous, then {f-1(Vα): α∈I} is 
countable αgs-open cover of X. Since X is countably αgs-
compact, there exists a finite subset Io of I such that X= ∪ 
{f-1(Vα): α∈Io}. Thus, we have Y= ∪ {Vα: α∈Io} and Y is count-
ably S-closed. 

(iii) Let {Vα: α∈I} be any regular closed cover of Y. Since f is 
almost contra αgs-continuous, then {f-1(Vα): α∈I} is αgs-closed 
cover of X. Since X is αgs-Lindelof, there exists a countable 
subset I0 of I such that X= ∪ {f-1(Vα): α∈Io}. Thus, we have Y= 
∪ {Vα: α∈Io} and Y is S-Lindelof. 

4. αGS-REGULAR GRAPHS 

In this section, we introduce αGS-regular graphs and strongly 
contra αgs-closed graphs and investigate the relationship be-
tween the graphs and almost contra αgs-continuous functions. 

  
Recall that for a function f: X→Y, the subset Gf = {(x, f(x))): 
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x∈X} ⊂ X x Y said to be graph of f. 
 
Definition 4.1: A graph Gf of a function f: X→Y is said to be 
αGS-regular (resp. strongly contra αgs-closed) if for each (x, y) 
∈ (X x Y) \ Gf, there exist a αgs-closed (resp. αgs-open) set U 
in X containing x and V ∈ RO(Y) ( resp. V∈ RC(Y)) contain-
ing y such that (U x V ) ∩ Gf = ϕ . 

Theorem 4.2: For a graph Gf of a function f: X →Y, the follow-
ing properties are equivalent:  
(i) Gf is αGS-regular (resp.strongly contra αgs-closed); 
(ii) For each point (x, y) ∈ RO(Y)) (resp. V∈ RC(Y)) contain-

ing y such that f(U) ∩ V = ϕ . 

Proof: This is direct consequences of Definintion 4.1 and the 
fact that for any subsets A ⊂ X and B ⊂  Y, (A x B) ∩ Gf = ϕ if 
and only if f(A) ∩ Gf = ϕ. 

Theorem 4.3: If f: X→ Y is almost contra αgs-continuous and Y 
is T2, then Gf is αGS-regular in X x Y. 

Proof: Let (x, y) ∈ (X x Y) \ Gf. It is obvious that f(x) ≠ y. Since 
Y is T2 there exist V, W ∈ RO(Y) such that f(x) ∈V, y ∈ W and 
V ∩ W = ϕ. Since f is almost contra αgs-continuous, f-1(V) is a 
αgs-closed set in X containing x. If we take U = f-1(V), then f(U) 
⊂  V. Therefore, f(U) ∩ W = ϕ  and Gf is αGS-regular. 

Theorem 4.4: If f: X→ Y have αGS-regular graph Gf. If f is in-
jective, then X is αgs-To. 

Proof: Let x and y be any two distinct points of X. Then, we 
have (x, f(y)) ∈ (X x Y) \ Gf. Since Gf is αGS-regular, there 
exist a αgs-closed set U of X and V∈ RO(Y) such that (x, f(y)) ∈ 
(U x V) and f(U) ∩ W =ϕ   by Theorem 4.2 and hence U ∩ f-1(V) 
= ϕ.Therefore, we have y ∉ U. Thus y∈ (X-U) and x ∉ (X-U). 
We obtain (X-U) ∈  αGSO(X). This implies that X is αgs-To. 

Theorem 4.5: If f: X→ Y have αGS-regular graph Gf. If f is sur-
jective, then Y is weakly Hausdorff. 

Proof: Let y1 and y2 be any two distinct points of X. Since f is 
surjective, f(x) = y1 for some x  ∈ X and (x, y2) ∈  (X x Y) \Gf. 
By Theorem 4.2, there exist a αgs-closed set U of X and F∈   
RO(Y) such that (x, y2) ∈  (U x F) and f(U) ∩ W = ϕ ; hence y1 ∉ 
F. Then y2  ∉ (Y-F) ∈  RC(Y) and y1 ∈ (Y-F). This implies that 
Y is weakly Hausdorff. 

5. CONCLUSION 

      The sets and functions in toplogical spaces and fuzzy topo-
logical spaces are extensively developed and used in many 
engineering problems, information systems, particle physics, 
computational topology and mathematical sciences.      

      By researching generalizations of closed sets, some new 
separation axioms have founded and are turned to be useful in 
the study of digital toplogy. Therefore, almost contra-αgs-
continuous functions defined by αgs-closed sets will have 
many possibilities of applications in digital topology and 
computer graphics. 
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